Bewegungsanalyse Statistik
Technische Analyse: Moving Averages Die meisten Chart-Muster zeigen eine Menge von Veränderungen in der Preisentwicklung. Dies kann es schwierig für Händler, eine Vorstellung von einem Sicherheiten insgesamt Trend zu bekommen. Eine einfache Methode Trader verwenden, um dies zu bekämpfen ist, gelten gleitende Durchschnitte. Ein gleitender Durchschnitt ist der Durchschnittspreis eines Wertpapiers über einen festgelegten Zeitraum. Durch die Plotierung eines durchschnittlichen Sicherheitspreises wird die Kursbewegung geglättet. Sobald die täglichen Schwankungen entfernt sind, sind Händler besser in der Lage, den wahren Trend zu identifizieren und erhöhen die Wahrscheinlichkeit, dass es zu ihren Gunsten zu arbeiten. (Um mehr zu erfahren, lesen Sie die Moving Averages Tutorial.) Arten von Moving Averages Es gibt eine Reihe von verschiedenen Arten von gleitenden Durchschnitten, die in der Art, wie sie berechnet werden, variieren, aber wie jeder Durchschnitt interpretiert wird, bleibt der gleiche. Die Berechnungen unterscheiden sich nur hinsichtlich der Gewichtung, die sie auf die Preisdaten setzen, wobei sie sich von der gleichen Gewichtung jedes Preispunktes zu mehr Gewicht auf die jüngsten Daten setzen. Die drei häufigsten Arten von gleitenden Durchschnitten sind einfach. Linear und exponentiell. Simple Moving Average (SMA) Dies ist die häufigste Methode, um den gleitenden Durchschnitt der Preise zu berechnen. Es nimmt einfach die Summe aller vergangenen Schlusskurse über den Zeitraum und teilt das Ergebnis durch die Anzahl der Preise, die in der Berechnung verwendet werden. Zum Beispiel werden in einem 10-Tage gleitenden Durchschnitt die letzten 10 Schlusskurse addiert und dann durch 10 geteilt. Wie Sie in Abbildung 1 sehen können, ist ein Händler in der Lage, den Durchschnitt weniger auf wechselnde Preise durch Erhöhung der Zahl zu reagieren Der in der Berechnung verwendeten Fristen. Die Erhöhung der Anzahl der Zeiträume in der Berechnung ist eine der besten Möglichkeiten, um die Stärke des langfristigen Trends und die Wahrscheinlichkeit, dass es umgekehrt zu messen. Viele Personen argumentieren, dass die Nützlichkeit dieser Art von Durchschnitt begrenzt ist, da jeder Punkt in der Datenreihe die gleiche Auswirkung auf das Ergebnis hat, unabhängig davon, wo er in der Sequenz auftritt. Die Kritiker argumentieren, dass die jüngsten Daten wichtiger sind und deshalb auch eine höhere Gewichtung haben sollte. Diese Art der Kritik war einer der Hauptfaktoren, die zur Erfindung anderer Formen von gleitenden Durchschnitten führten. Linearer gewichteter Mittelwert Dieser gleitende Durchschnittsindikator ist der kleinste der drei Fälle und wird verwendet, um das Problem der gleichen Gewichtung zu lösen. Der lineare gewichtete gleitende Durchschnitt wird berechnet, indem die Summe aller Schlusskurse über einen bestimmten Zeitraum genommen und mit der Position des Datenpunkts multipliziert wird und dann durch die Summe der Anzahl von Perioden dividiert wird. Beispielsweise wird in einem fünftägigen linearen gewichteten Durchschnitt der heutige Schlusskurs mit fünf, yesterdays um vier multipliziert und so weiter, bis der erste Tag im Periodenbereich erreicht ist. Diese Zahlen werden dann addiert und durch die Summe der Multiplikatoren dividiert. Exponential Moving Average (EMA) Diese gleitende Durchschnittsberechnung verwendet einen Glättungsfaktor, um ein höheres Gewicht auf die letzten Datenpunkte zu legen und gilt als viel effizienter als der linear gewichtete Durchschnitt. Ein Verständnis der Berechnung ist in der Regel nicht für die meisten Händler erforderlich, da die meisten Charting-Pakete die Berechnung für Sie. Das Wichtigste, um sich über den exponentiellen gleitenden Durchschnitt zu erinnern, ist, dass er mehr auf neue Informationen bezogen auf den einfachen gleitenden Durchschnitt reagiert. Diese Reaktionsfähigkeit ist einer der Schlüsselfaktoren, warum dies der gleitende Durchschnitt der Wahl unter vielen technischen Händlern ist. Wie Sie in Abbildung 2 sehen können, steigt und fällt ein 15-Perioden-EMA schneller als ein 15-stündiges SMA. Diese leichte Differenz scheint nicht so viel, aber es ist ein wichtiger Faktor, um bewusst zu sein, da sie die Rückkehr beeinflussen können. Hauptverwendungen der Gleitende Mittel Gleitende Mittelwerte werden verwendet, um aktuelle Trends und Trendumkehrungen zu identifizieren sowie Unterstützungs - und Widerstandswerte einzurichten. Bewegungsdurchschnitte können verwendet werden, um schnell zu identifizieren, ob sich ein Sicherheitsgut in einem Aufwärtstrend oder einem Abwärtstrend bewegt, abhängig von der Richtung des gleitenden Durchschnitts. Wie Sie in Abbildung 3 sehen können, wenn ein gleitender Durchschnitt aufwärts geht und der Preis über ihm liegt, ist die Sicherheit in einem Aufwärtstrend. Umgekehrt kann ein abwärts gerichteter gleitender Durchschnitt mit dem Preis unten verwendet werden, um einen Abwärtstrend zu signalisieren. Ein anderes Verfahren zur Bestimmung des Impulses besteht darin, die Reihenfolge eines Paares von sich bewegenden Mittelwerten zu betrachten. Wenn ein kurzfristiger Durchschnitt über einem längerfristigen Durchschnitt liegt, ist der Trend vorbei. Auf der anderen Seite signalisiert ein langfristiger Durchschnitt über einem kürzerfristigen Durchschnitt eine Abwärtsbewegung im Trend. Gleitende durchschnittliche Trendumkehrungen werden in zwei Hauptformen gebildet: wenn der Preis sich durch einen gleitenden Durchschnitt bewegt und wenn er sich durch gleitende Durchschnittsübergänge bewegt. Das erste gemeinsame Signal ist, wenn der Preis bewegt sich durch einen wichtigen gleitenden Durchschnitt. Wenn beispielsweise der Kurs eines Wertpapiers, der sich in einem Aufwärtstrend befand, unter einen 50-Perioden-gleitenden Durchschnitt fällt, wie in 4, ist dies ein Zeichen, dass der Aufwärtstrend umgekehrt werden kann. Das andere Signal einer Trendumkehr ist, wenn ein gleitender Durchschnitt einen anderen kreuzt. Zum Beispiel, wie Sie in Abbildung 5 sehen können, wenn der 15-Tage-Gleitende Durchschnitt über dem 50-Tage-Gleitenden Durchschnitt überschreitet, ist es ein positives Zeichen, dass der Preis zu steigen beginnt. Wenn die in der Berechnung verwendeten Zeiträume relativ kurz sind, beispielsweise 15 und 35, könnte dies eine kurzfristige Trendumkehr signalisieren. Auf der anderen Seite, wenn zwei Mittelwerte mit relativ langen Zeitrahmen überqueren (50 und 200, zum Beispiel), wird dies verwendet, um eine langfristige Trendverschiebung vorzuschlagen. Ein weiterer wichtiger Weg gleitende Durchschnitte werden verwendet, um Unterstützung und Widerstand Ebenen zu identifizieren. Es ist nicht ungewöhnlich zu sehen, eine Aktie, die fallen hat seinen Rückgang stoppen und umgekehrte Richtung, sobald es die Unterstützung eines großen gleitenden Durchschnitt trifft. Ein Umzug durch einen großen gleitenden Durchschnitt wird oft als Signal von technischen Händlern verwendet, dass der Trend rückgängig gemacht wird. Wenn beispielsweise der Kurs den 200-Tage-Bewegungsdurchschnitt in einer Abwärtsrichtung durchbricht, ist dies ein Signal, dass der Aufwärtstrend umgekehrt wird. Gleitende Durchschnitte sind ein leistungsfähiges Werkzeug für die Analyse der Trend in einer Sicherheit. Sie bieten nützliche Unterstützung und Widerstand Punkte und sind sehr einfach zu bedienen. Die am häufigsten verwendeten Zeitrahmen, die verwendet werden, wenn gleitende Durchschnitte zu schaffen sind die 200-Tage, 100 Tage, 50-Tage, 20-Tage und 10-Tage. Die 200-Tage-Durchschnitt wird angenommen, ein gutes Maß für ein Geschäftsjahr zu sein, ein 100-Tage-Durchschnitt ein halbes Jahr, ein 50-Tage-Durchschnitt ein Viertel eines Jahres eine 20-Tage-Durchschnitt eines Monats und 10 - Durchschnitt von zwei Wochen. Gleitende Durchschnitte helfen technische Händler einige der Lärm glätten, die in Tag-zu-Tag Kursbewegungen, so dass Händler eine bessere Sicht auf die Preisentwicklung zu finden ist. Bisher konzentrieren wir uns auf die Preisentwicklung, durch Diagramme und Durchschnitte. Im nächsten Abschnitt, betrachten auch einige andere Techniken, die benutzt werden, um Preisbewegung und - muster zu bestätigen. Technische Analyse: Indikatoren und Oszillatoren Erfahren Sie, wie Sie investieren, indem Sie den Investing Basics Newsletter abonnierenMoving Durchschnitt - MA BREAKING DOWN Gleitender Durchschnitt - MA Als SMA Beispiel betrachten Sie eine Sicherheit mit den folgenden Schlusskursen über 15 Tage: Woche 1 (5 Tage) 20 , 22, 24, 25, 23 Woche 2 (5 Tage) 26, 28, 26, 29, 27 Woche 3 (5 Tage) 28, 30, 27, 29, 28 Eine 10-tägige MA würde die Schlusskurse für Die ersten 10 Tage als erster Datenpunkt. Der nächste Datenpunkt würde den frühesten Preis senken, den Preis am Tag 11 addieren und den Durchschnitt nehmen, und so weiter, wie unten gezeigt. Wie bereits erwähnt, verzögert MAs die aktuelle Preisaktion, weil sie auf vergangenen Preisen basieren, je länger der Zeitraum für die MA ist, desto größer ist die Verzögerung. So wird ein 200-Tage-MA haben eine viel größere Verzögerung als eine 20-Tage-MA, weil es Preise für die letzten 200 Tage enthält. Die Länge des zu verwendenden MA hängt von den Handelszielen ab, wobei kürzere MAs für den kurzfristigen Handel und längerfristige MAs eher für langfristige Anleger geeignet sind. Die 200-Tage-MA ist weithin gefolgt von Investoren und Händlern, mit Pausen über und unter diesem gleitenden Durchschnitt als wichtige Trading-Signale. MAs auch vermitteln wichtige Handelssignale auf eigene Faust, oder wenn zwei Durchschnitte überqueren. Eine steigende MA zeigt an, dass die Sicherheit in einem Aufwärtstrend liegt. Während eine sinkende MA zeigt, dass es in einem Abwärtstrend ist. In ähnlicher Weise wird das Aufwärtsmoment mit einem bulligen Crossover bestätigt. Die auftritt, wenn eine kurzfristige MA über einem längerfristigen MA kreuzt. Abwärts-Momentum wird mit einem bärischen Übergang bestätigt, der auftritt, wenn ein kurzfristiges MA-Kreuz unter einer längerfristigen MA. Smoothing Daten entfernt zufällige Variation und zeigt Trends und zyklische Komponenten Inhärent in der Sammlung von Daten im Laufe der Zeit genommen ist eine Form von zufälligen Variation. Es gibt Methoden zur Verringerung der Annullierung der Wirkung aufgrund zufälliger Variation. Eine häufig verwendete Technik in der Industrie ist Glättung. Diese Technik zeigt, wenn sie richtig angewendet wird, deutlicher den zugrunde liegenden Trend, saisonale und zyklische Komponenten. Es gibt zwei verschiedene Gruppen von Glättungsmethoden Mittelungsmethoden Exponentielle Glättungsmethoden Mittelwertbildung ist der einfachste Weg, um Daten zu glätten Wir werden zunächst einige Mittelungsmethoden untersuchen, z. B. den einfachen Mittelwert aller vergangenen Daten. Ein Manager eines Lagers möchte wissen, wie viel ein typischer Lieferant in 1000-Dollar-Einheiten liefert. Er / sie nimmt eine Stichprobe von 12 Lieferanten, die zufällig die folgenden Ergebnisse erhalten: Der berechnete Mittelwert oder Durchschnitt der Daten 10. Der Manager beschließt, dies als Schätzung der Ausgaben eines typischen Lieferanten zu verwenden. Ist dies eine gute oder schlechte Schätzung Mittel quadratischen Fehler ist ein Weg, um zu beurteilen, wie gut ein Modell ist Wir berechnen die mittlere quadratische Fehler. Der Fehler true Betrag verbraucht minus die geschätzte Menge. Der Fehler quadriert ist der Fehler oben, quadriert. Die SSE ist die Summe der quadratischen Fehler. Die MSE ist der Mittelwert der quadratischen Fehler. MSE Ergebnisse zum Beispiel Die Ergebnisse sind: Fehler und quadratische Fehler Die Schätzung 10 Die Frage stellt sich: Können wir das Mittel verwenden, um Einkommen zu prognostizieren, wenn wir einen Trend vermuten Ein Blick auf die Grafik unten zeigt deutlich, dass wir dies nicht tun sollten. Durchschnittliche Gewichtungen alle früheren Beobachtungen gleich In Zusammenfassung, wir sagen, dass die einfachen Mittelwert oder Mittelwert aller vergangenen Beobachtungen ist nur eine nützliche Schätzung für die Prognose, wenn es keine Trends. Wenn es Trends, verwenden Sie verschiedene Schätzungen, die den Trend berücksichtigen. Der Durchschnitt wiegt alle früheren Beobachtungen gleichermaßen. Zum Beispiel ist der Durchschnitt der Werte 3, 4, 5 4. Wir wissen natürlich, dass ein Durchschnitt berechnet wird, indem alle Werte addiert werden und die Summe durch die Anzahl der Werte dividiert wird. Eine andere Methode, den Durchschnitt zu berechnen, ist die Addition jedes Wertes durch die Anzahl der Werte oder 3/3 4/3 5/3 1 1.3333 1.6667 4. Der Multiplikator 1/3 wird als Gewicht bezeichnet. Allgemein: bar frac sum links (frac rechts) x1 links (frac rechts) x2,. ,, Links (frac rechts) xn. Die (von links (Frac rechts)) sind die Gewichte und, natürlich, sie summieren Durchschnitte 1.Moving Gleitende Durchschnitte Bei herkömmlichen Datensätzen der Mittelwert ist oft die erste und eine der nützlichsten, zusammenfassende Statistiken zu berechnen. Wenn die Daten in Form einer Zeitreihe vorliegen, ist das Serienmittel eine nützliche Maßnahme, spiegelt aber nicht die dynamische Natur der Daten wider. Meanwerte, die über kurzgeschlossene Perioden berechnet werden, die entweder der aktuellen Periode vorangehen oder auf die aktuelle Periode zentriert sind, sind oft nützlicher. Weil solche Mittelwerte sich ändern oder sich bewegen, wenn sich die aktuelle Periode von der Zeit t & sub2 ;, t & sub3; usw. bewegt, werden sie als gleitende Durchschnittswerte (Mas) bezeichnet. Ein einfacher gleitender Durchschnitt ist (üblicherweise) der ungewichtete Durchschnitt von k vorherigen Werten. Ein exponentiell gewichteter gleitender Durchschnitt ist im Wesentlichen derselbe wie ein einfacher gleitender Durchschnitt, aber mit Beiträgen zum Mittelwert, der durch ihre Nähe zur aktuellen Zeit gewichtet wird. Da es keine einzige, sondern eine ganze Reihe von gleitenden Mittelwerten für eine beliebige Reihe gibt, kann der Satz von Mas selbst auf Graphen aufgetragen, als Serie analysiert und in der Modellierung und Prognose verwendet werden. Eine Reihe von Modellen kann mit gleitenden Durchschnitten konstruiert werden, und diese werden als MA-Modelle bekannt. Wenn solche Modelle mit autoregressiven (AR) Modellen kombiniert werden, sind die resultierenden zusammengesetzten Modelle als ARMA - oder ARIMA-Modelle bekannt (die I ist für integriert). Einfache gleitende Mittelwerte Da eine Zeitreihe als ein Satz von Werten betrachtet werden kann, können t 1,2,3,4, n der Mittelwert dieser Werte berechnet werden. Wenn wir annehmen, daß n ziemlich groß ist, so wählen wir eine ganze Zahl k, die viel kleiner als n ist. Können wir einen Satz von Blockdurchschnitten oder einfache Bewegungsdurchschnitte (der Ordnung k) berechnen: Jede Messung repräsentiert den Durchschnitt der Datenwerte über einem Intervall von k Beobachtungen. Man beachte, daß das erste mögliche MA der Ordnung kgt0 dasjenige für tk ist. Allgemeiner können wir den zusätzlichen Index in die obigen Ausdrücke schreiben und schreiben: Dies bedeutet, daß der geschätzte Mittelwert zum Zeitpunkt t der einfache Mittelwert des beobachteten Wertes zum Zeitpunkt t und den vorhergehenden k -1 Zeitschritten ist. Wenn Gewichte angewandt werden, die den Beitrag von Beobachtungen verringern, die weiter weg in der Zeit sind, wird der gleitende Durchschnitt als exponentiell geglättet. Gleitende Mittelwerte werden häufig als eine Form der Prognose verwendet, wobei der Schätzwert für eine Reihe zum Zeitpunkt t 1, S t1. Wird als MA für den Zeitraum bis einschließlich der Zeit t genommen. z. B. Die heutige Schätzung basiert auf einem Durchschnitt der bisherigen aufgezeichneten Werte bis einschließlich gestern (für tägliche Daten). Einfache gleitende Mittelwerte können als eine Form der Glättung gesehen werden. In dem nachfolgend dargestellten Beispiel wurde der in der Einleitung zu diesem Thema gezeigte Luftverschmutzungs-Datensatz um eine 7-tägige gleitende Linie (MA) ergänzt, die hier in Rot dargestellt ist. Wie man sehen kann, glättet die MA-Linie die Spitzen und Täler in den Daten und kann sehr hilfreich sein, um Trends zu identifizieren. Die Standard-Vorwärtsberechnungsformel bedeutet, dass die ersten k-1-Datenpunkte keinen MA-Wert haben, aber danach rechnen sich die Berechnungen auf den Enddatenpunkt in der Reihe. PM10 tägliche Mittelwerte, Greenwich Quelle: London Air Quality Network, www. londonair. org. uk Ein Grund für die Berechnung einfacher gleitender Durchschnittswerte in der beschriebenen Weise ist, dass sie Werte für alle Zeitschlitze von der Zeit tk bis zur Gegenwart berechnen lässt , Und wenn eine neue Messung für die Zeit t 1 erhalten wird, kann die MA für die Zeit t 1 zu der bereits berechneten Menge addiert werden. Dies bietet eine einfache Vorgehensweise für dynamische Datensätze. Allerdings gibt es einige Probleme mit diesem Ansatz. Es ist vernünftig zu argumentieren, dass sich der Mittelwert der letzten 3 Perioden zum Zeitpunkt t -1, nicht zur Zeit t, befinden sollte. Und für eine MA über eine gerade Anzahl von Perioden vielleicht sollte sie sich in der Mitte zwischen zwei Zeitintervallen befinden. Eine Lösung für dieses Problem besteht darin, zentrierte MA-Berechnungen zu verwenden, bei denen der MA zum Zeitpunkt t der Mittelwert einer symmetrischen Menge von Werten um t ist. Trotz seiner offensichtlichen Verdienste wird dieser Ansatz nicht allgemein verwendet, weil er erfordert, dass Daten für zukünftige Ereignisse verfügbar sind, was möglicherweise nicht der Fall sein kann. In Fällen, in denen die Analyse vollständig aus einer bestehenden Serie besteht, kann die Verwendung von zentriertem Mas bevorzugt sein. Einfache gleitende Mittelwerte können als eine Form von Glättung, Entfernen einiger Hochfrequenzkomponenten einer Zeitreihe und Hervorhebung (aber nicht Entfernen) von Trends in einer ähnlichen Weise wie der allgemeine Begriff der digitalen Filterung betrachtet werden. Tatsächlich sind die gleitenden Mittelwerte eine Form eines linearen Filters. Es ist möglich, eine gleitende Durchschnittsberechnung auf eine Reihe anzuwenden, die bereits geglättet worden ist, d. h. Glätten oder Filtern einer bereits geglätteten Reihe. Zum Beispiel können wir mit einem gleitenden Mittelwert der Ordnung 2 es als berechnen mit Gewichten betrachten, so dass das MA bei x 2 0,5 x 1 0,5 x 2 gilt. Ebenso ist das MA bei x 3 0,5 x 2 0,5 x 3. Wenn wir Eine zweite Glättungs - oder Filterstufe anwenden, so haben wir 0,5 x 2 0,5 x 3 0,5 (0,5 x 1 0,5 x 2) 0,5 (0,5 x 2 0,5 x 3) 0,25 x 1 0,5 x 2 0,25 x 3, dh die zweistufige Filterung Prozess (oder Faltung) einen variabel gewichteten symmetrischen gleitenden Durchschnitt mit Gewichten erzeugt hat. Mehrere Windungen können sehr komplexe gewichtete gleitende Durchschnitte erzeugen, von denen einige speziell in Spezialgebieten, wie etwa in Lebensversicherungsberechnungen, gefunden wurden. Bewegungsdurchschnitte können verwendet werden, um periodische Effekte zu entfernen, wenn sie mit der Länge der Periodizität als bekannt berechnet werden. Zum Beispiel können mit monatlichen Daten saisonale Schwankungen oft entfernt werden (wenn dies das Ziel ist), indem Sie eine symmetrische 12-monatigen gleitenden Durchschnitt mit allen Monaten gleichmäßig gewichtet, mit Ausnahme der ersten und letzten, die mit 1/2 gewichtet werden. Dies liegt daran, dass es 13 Monate im symmetrischen Modell (aktuelle Zeit, t / / 6 Monate). Die Gesamtzahl wird durch 12 geteilt. Ähnliche Verfahren können für jede wohldefinierte Periodizität angenommen werden. Exponentiell gewichtete Bewegungsdurchschnitte (EWMA) Mit der einfachen gleitenden Durchschnittsformel werden alle Beobachtungen gleich gewichtet. Wenn wir diese Gleichgewichte, alpha t. Würde jedes der k Gewichte gleich 1 / k sein. So dass die Summe der Gewichte würde 1, und die Formel wäre: Wir haben bereits gesehen, dass mehrere Anwendungen dieses Prozesses in die Gewichte variieren führen. Bei exponentiell gewichteten Bewegungsdurchschnitten wird der Beitrag zum Mittelwert aus mehr zeitlich entfernten Beobachtungen verringert, wodurch neuere (lokale) Ereignisse hervorgehoben werden. Im wesentlichen wird ein Glättungsparameter 0lt alpha lt1 eingeführt und die Formel überarbeitet: Eine symmetrische Version dieser Formel würde die Form haben: Wenn die Gewichte im symmetrischen Modell als die Ausdrücke der Terme der Binomialdehnung ausgewählt werden, (1/21/2) 2q. Sie summieren sich auf 1, und wenn q groß wird, nähert sich die Normalverteilung. Dies ist eine Form der Kerngewichtung, wobei das Binomial als Kernfunktion dient. Die im vorigen Teilabschnitt beschriebene zweistufige Faltung ist genau diese Anordnung, wobei q 1 die Gewichte ergibt. Bei der exponentiellen Glättung ist es notwendig, einen Satz von Gewichten zu verwenden, die auf 1 summieren und die geometrisch verkleinern. Die verwendeten Gewichte haben typischerweise die Form: Um zu zeigen, daß diese Gewichte zu 1 summieren, betrachten wir die Ausdehnung von 1 / als Folge. Wir können den Ausdruck in Klammern schreiben und erweitern, indem wir die binomische Formel (1- x) p verwenden. Wobei x (1) und p -1, was ergibt, ergibt sich daraus ein gewichtetes gleitendes Mittel der Form: Diese Summation kann als Rekursionsrelation geschrieben werden, was die Berechnung stark vereinfacht und das Problem vermeidet, daß das Gewichtungsregime Sollte strikt unendlich sein, damit die Gewichte auf 1 summieren (für kleine Werte von Alpha ist dies typischerweise nicht der Fall). Die von verschiedenen Autoren verwendete Schreibweise variiert. Einige verwenden den Buchstaben S, um anzuzeigen, daß die Formel im wesentlichen eine geglättete Variable ist, und schreiben: während die kontrolltheoretische Literatur oft Z anstelle von S für die exponentiell gewichteten oder geglätteten Werte verwendet (siehe z. B. Lucas und Saccucci, 1990, LUC1) , Und die NIST-Website für weitere Details und bearbeitete Beispiele). Die Formeln, die oben zitiert wurden, stammen aus der Arbeit von Roberts (1959, ROB1), aber Hunter (1986, HUN1) verwendet einen Ausdruck der Form, die für die Verwendung in einigen Kontrollverfahren geeigneter sein kann. Bei alpha 1 ist die mittlere Schätzung einfach ihr gemessener Wert (oder der Wert des vorherigen Datenelements). Bei 0,5 ist die Schätzung der einfache gleitende Durchschnitt der aktuellen und vorherigen Messungen. In Prognosemodellen wird der Wert S t. Wird oft als Schätzwert oder Prognosewert für die nächste Zeitperiode, dh als Schätzung für x zum Zeitpunkt t 1, verwendet. Somit haben wir: Dies zeigt, dass der Prognosewert zum Zeitpunkt t 1 eine Kombination des vorherigen exponentiell gewichteten gleitenden Durchschnitts ist Plus eine Komponente, die den gewichteten Vorhersagefehler darstellt, epsilon. Zum Zeitpunkt t. Wenn eine Zeitreihe gegeben wird und eine Prognose erforderlich ist, ist ein Wert für alpha erforderlich. Dies kann aus den vorhandenen Daten abgeschätzt werden, indem die Summe der quadrierten Prädiktionsfehler, die mit variierenden Werten von alpha für jedes t 2,3 erhalten werden, ausgewertet wird. Wobei der erste Schätzwert der erste beobachtete Datenwert x ist. Bei Steueranwendungen ist der Wert von alpha wichtig, da er bei der Bestimmung der oberen und unteren Steuergrenzen verwendet wird und die erwartete durchschnittliche Lauflänge (ARL) beeinflusst Bevor diese Kontrollgrenzen unterbrochen werden (unter der Annahme, dass die Zeitreihe eine Menge von zufälligen, identisch verteilten unabhängigen Variablen mit gemeinsamer Varianz darstellt). Unter diesen Umständen ist die Varianz der Kontrollstatistik: (Lucas und Saccucci, 1990): Kontrollgrenzen werden gewöhnlich als feste Vielfache dieser asymptotischen Varianz festgelegt, z. B. / - das Dreifache der Standardabweichung. Wenn beispielsweise & alpha; 0,25 angenommen wird und die zu überwachenden Daten eine Normalverteilung haben, wird N (0,1), wenn sie gesteuert wird, die Steuergrenzen / - 1,134 sein, und der Prozeß wird eine oder andere Grenze in 500 erreichen Schritte im Durchschnitt. Lucas und Saccucci (1990 LUC1) leiten die ARLs für eine breite Palette von Alpha-Werten und unter verschiedenen Annahmen unter Verwendung von Markov-Chain-Prozeduren ab. Sie tabellieren die Ergebnisse, einschließlich der Bereitstellung von ARLs, wenn der Mittelwert des Kontrollprozesses um ein Vielfaches der Standardabweichung verschoben worden ist. Beispielsweise beträgt bei einer 0,5-Verschiebung mit alpha 0,25 die ARL weniger als 50 Zeitschritte. Die oben beschriebenen Ansätze sind als einzelne exponentielle Glättung bekannt. Da die Prozeduren einmal auf die Zeitreihe angewendet werden und dann Analysen oder Steuerprozesse auf dem resultierenden geglätteten Datensatz durchgeführt werden. Wenn der Datensatz einen Trend und / oder saisonale Komponenten enthält, kann eine zweidimensionale oder dreistufige Exponentialglättung angewendet werden, um diese Effekte zu entfernen (explizit modellieren) (siehe weiter unten im Abschnitt "Vorhersage" und "NIST") ). CHA1 Chatfield C (1975) Die Analyse der Zeitreihen: Theorie und Praxis. Chapman und Hall, London HUN1 Hunter J S (1986) Der exponentiell gewichtete gleitende Durchschnitt. J von Qualitätstechnologie, 18, 203-210 LUC1 Lucas J M, Saccucci M S (1990) Exponentiell gewichtete gleitende durchschnittliche Kontrollschemata: Eigenschaften und Verbesserungen. Technometrics, 32 (1), 1-12 ROB1 Roberts S W (1959) Kontrolltests auf der Grundlage geometrischer Bewegungsdurchschnitte. Technometrics, 1, 239-250Weight Moving Average in Beispiel 1 von Simple Moving Average Forecast. Die Gewichte der vorherigen drei Werte waren alle gleich. Wir betrachten nun den Fall, wo diese Gewichte verschieden sein können. Diese Art der Prognose wird als gewichteter gleitender Durchschnitt bezeichnet. Hier weisen wir m Gewichte w 1 zu. , W m. Wobei w & sub1; W m 1 und definieren die prognostizierten Werte wie folgt Beispiel 1. Wiederholen Sie Beispiel 1 der Simple Moving Average Prognose, wobei wir annehmen, dass neuere Beobachtungen mehr als ältere Beobachtungen gewichtet werden, wobei die Gewichtungen w 1, 6, w 2, 3 und w 3 .1 (wie im Bereich G4: G6 von 1 gezeigt ist ). Abbildung 1 Gewichtete gleitende Mittelwerte Die Formeln in Abbildung 1 sind dieselben wie in Abbildung 1 der einfachen gleitenden Durchschnittsprognose. Mit Ausnahme der prognostizierten y-Werte in Spalte C. Z. B. Die Formel in Zelle C7 ist jetzt SUMPRODUCT (B4: B6, G4: G6). Die Prognose für den nächsten Wert in der Zeitreihe ist nun 81,3 (Zelle C19) unter Verwendung der Formel SUMPRODUCT (B16: B18, G4: G6). Echtes Statistik-Datenanalyse-Werkzeug. Excel bietet kein gewichtetes gleitendes Datenanalyse-Tool. Stattdessen können Sie das Datenanalyse-Tool "Real Statistics Weighted Moving Averages" verwenden. Um dieses Werkzeug für Beispiel 1 zu verwenden, drücken Sie Ctr-m. Wählen Sie die Option Time Series aus dem Hauptmenü und dann die Option Basic forecasting methods aus dem Dialogfeld, das angezeigt wird. Füllen Sie das Dialogfeld aus, das in Abbildung 5 von Simple Moving Average Forecast angezeigt wird. Aber dieses Mal wählen Sie die Option Gewichtete Bewegungsdurchschnitte und füllen Sie den Gewichtsbereich mit G4: G6 aus (beachten Sie, dass keine Spaltenüberschrift für den Gewichtsbereich enthalten ist). Keiner von Parameterwerten wird verwendet (im Wesentlichen von Lags wird die Anzahl der Zeilen im Gewichtsbereich und von Jahreszeiten und von Prognosen ist standardmäßig auf 1). Die Ausgabe sieht genau wie die Ausgabe in Abbildung 2 von Simple Moving Average Forecast aus. Außer daß die Gewichte bei der Berechnung der Prognosewerte verwendet werden. Beispiel 2. Verwenden Sie Solver, um die Gewichte zu berechnen, die den kleinsten mittleren quadratischen Fehler MSE erzeugen. Verwenden Sie die Formeln in Abbildung 1, wählen Sie Data gt AnalysisSolver und füllen Sie das Dialogfeld aus, wie in Abbildung 2 gezeigt. Abbildung 2 Dialogfeld "Solver" Beachten Sie, dass wir die Summe der Gewichte auf 1 beschränken müssen, was wir tun, indem Sie auf die Schaltfläche klicken Schaltfläche Hinzufügen. Daraufhin erscheint das Dialogfeld Add Constraint, das wir wie in Abbildung 3 gezeigt ausfüllen und dann auf die Schaltfläche OK klicken. Abbildung 3 Add Constraint-Dialogfeld Als nächstes klicken Sie auf die Schaltfläche Solve (in Abbildung 2), die die Daten in Abbildung 1 wie in Abbildung 4 dargestellt modifiziert. Abbildung 4 Solver-Optimierung Wie aus Abbildung 4 ersichtlich, ändert Solver die Gewichte auf 0 223757 und .776243, um den Wert von MSE zu minimieren. Wie Sie sehen können, ist der minimierte Wert von 184,688 (Zelle E21 von 4) mindestens geringer als der MSE-Wert von 191,366 in Zelle E21 von 2). Um diese Gewichte zu sperren, müssen Sie auf die Schaltfläche OK des Dialogfelds Solver-Ergebnisse klicken, das in Abbildung 4 gezeigt ist.
Comments
Post a Comment